Medical device and MedTech insights, news, tips and more
New Imaging Method Captures a Detailed Snapshot of Brain
June 1, 2016
When it comes to measuring brain activity, scientists have tools that can take a precise look at a small slice of the brain (less than one cubic millimeter), or a blurred look at a larger area. Now, researchers at Rockefeller University have described a new technique that combines the best of both worlds–it captures a detailed snapshot of global activity in the mouse brain.
“We wanted to develop a technique that would show you the level of activity at the precision of a single neuron, but at the scale of the whole brain,” says study author Nicolas Renier, a postdoctoral fellow in the lab of Marc Tessier-Lavigne, professor of the Laboratory of Brain Development and Repair, and president of Rockefeller University.
The new method, described online on May 26 in Cell, takes a picture of all the active neurons in the brain at a specific time. The mouse brain contains dozens of millions of neurons, and a typical image depicts the activity of approximately one million neurons, says Tessier-Lavigne. “The purpose of the technique is to accelerate our understanding of how the brain works.”
Making Brains Transparent
“Because of the nature of our technique, we cannot visualize live brain activity over time–we only see neurons that are active at the specific time we took the snapshot,” says Eliza Adams, a graduate student in Tessier-Lavigne’s lab and co-author of the study. “But what we gain in this trade-off is a comprehensive view of most neurons in the brain, and the ability to compare these active neuronal populations between snapshots in a robust and unbiased manner.”
Here’s how the tool works: The researchers expose a mouse to a situation that would provoke altered brain activity–such as taking an anti-psychotic drug, brushing whiskers against an object while exploring, and parenting a pup–then make the measurement after a pause. The pause is important, explains Renier, because the technique measures neuron activity indirectly, via the translation of neuronal genes into proteins, which takes about 30 minutes to occur.